	Number	Algebra	Geometry	Fluency and Problem Solving
	- Students solve problems that involve calculating with powers and roots. - They choose to use fractions or percentages to solve problems involving ordering values or the calculation of quantities given the result of a proportional change. - Students can find the Highest Common Factor and Lowest Common Multiple of up to three integers up to three digits in size	- Students are confident in rearranging the subjec \dagger of algebraic equations. - In simplifying algebraic expressions, they freely use the rules of indices with both positive and negative integer values. - They evaluate algebraic formulae or calculate one variable, given the others, substituting in fractions, decimals, and negative numbers.	- Students are confident in using letter and labelling conventions. - They can draw and measure angles up to 360°. - They can identify perpendicular and parallel lines. - They can identify polygons up to a decagon - They can construct triangles using SSS, SAS and ASA, and more complex polygons. - They can draw and interpret simple pie charts using a protractor. - They know and can apply the angle facts to solve complex problems. - They understand the angles in parallel lines rules. - They use known facts to obtain simple proofs.	- Students are fluent in their times tables up to 15 without using a written process. They can mentally use the inverse relationship between multiplication and division up to 15 and the written processes for all other numbers including decimals, negatives, and fractions. - They show speed and accuracy in completing mental arithmetic and have well developed calculator skills allowing them to complete complex functions in line with the topics covered in the Year 7 curriculum. - They can extract all relevant numerical values from text-based information. - They can independently devise an approach and strategy with which to calculate solutions to problems presented to them. - They demonstrate confidence in being able to prove why an answer is correct. - They set calculations out clearly to show the process derived in their working out. - They communicate mathematical meaning to different audiences through precise and consistent use of symbols that is sustained throughout the work

	Number	Algebra	Geometry	Fluency and Problem Solving
((1) C	- Students use their understanding of place value to multiply and divide whole numbers and decimals. - They order, add, and subtract negative numbers in context. - They use all four operations with decimals to two places. - They evaluate one number as a fraction or percentage of another. - They understand and use the equivalences between fractions, decimals, and percentages in appropriate situations. - They add and subtract fractions by writing them with a common denominator. - They successfully round to a given number of decimal places and significant figures and can multiply and divide mentally. - They understand the effects of multiplying and dividing by numbers between 0 and 1 . - They understand and use proportional changes, calculating the result of any proportional change using only multiplicative methods. - Students can find the Highest Common Factor and Lowest Common Multiple of a pair of integers up to three digits in size.	- They find and describe in words the rule for the next term where the rule is linear and non-linear. They formulate and solve linear equations with whole-number coefficients and negative numbers. - They construct, express in symbolic form, and use simple formulae involving one or two operations with negative numbers. - They use brackets appropriately. - They can use algebraic formulae to calculate one missing variable, given the others, substituting in integers and negative numbers.	- Students are confident in using letter and labelling conventions. - They can draw and measure angles up to 360°. - They can identify perpendicular and parallel lines. - They can identify polygons up to a decagon - They can construct triangles using SSS, SAS and ASA, and more complex polygons. - They can interpret simple pie charts using a protractor. - They know and can apply the angle facts to solve complex problems. - They understand the angles in parallel lines rules.	- Students are fluent in their times tables up to 12 without using a written process. They can mentally use the inverse relationship between multiplication and division up to 12 and the written processes for all other numbers including decimals, negatives, and fractions. - They apply the order of operations rules for all calculations. - They are proficient in the use of a scientific calculator when completing calculations in line with the Year 7 curriculum. - They can extract relevant numerical values from text-based information - They can carry out substantial tasks and solve quite complex problems by independently and systematically breaking them down into smaller, more manageable tasks. - Their written and spoken language explains and informs their use of diagrams. - They begin to give mathematical justifications, making connections between the current situation and situations they have encountered before.

- Students use their understanding of place value to multiply and divide whole numbers by 10 or 100 .
- They begin to use decimal notation and to recognise negative numbers, in contexts such as money and temperature.
- They order, add, and subtract negative numbers in context.
- They use all four operations with decimals to two places and quick derivation of corresponding division facts. - They use efficient written methods of addition and subtraction and of short multiplication and division.
- They calculate fractional or percentage parts of quantities and measurements, using a calculator where appropriate.
- They use brackets appropriately.
- They solve whole-number problems involving multiplication or division, including those that give rise to remainders.
- They use simple fractions that are several parts of a whole and recognise when two simple fractions are equivalent.
- They recognise approximate proportions of a whole and use simple fractions and percentages to describe these.
- Students can find the Highest Common Factor and Lowest Common Multiple of a pair of integers up to 100.
- Students construct, express in symbolic form, and use simple formulae involving one or two operations.
- They construct, express in symbolic form, and use simple formulae involving one operation.
- They can also use brackets appropriately within the formulae.
- They can use algebraic formulae to calculate one missing variable, given the others, substituting in integers.

Geomeiry

- Students can use letter and labelling conventions.
- They can draw and measure angles up to 180°.
- They can identify perpendicular and parallel lines.
- They can
recognise types of triangle and quadrilateral. - They can construct triangles using SSS.
- They can
interpret simple pie charts using proportion.
- They know and can apply the angle facts to solve problems.

Fluency and Problem Solving

- Students demonstrate fluency in their times tables up to 12 , although this may not be at speed and will require the written process at times and can use this knowledge to support problems involving division.
- They use a written process for division calculations and multiplications above 12.
- They adhere to the order of operations rules for the vast quantity of calculations.
- They can use a scientific calculator when completing calculations in line with the Year 7 curriculum.
- They can use a detailed modelled answer to supplement in their own variables to calculate their answer. - They can use a given approach to tackle a problem and draw upon their mathematical knowledge to apply a given process to solve a problem.
- When solving problems, with or without a calculator, they check their results are reasonable by considering the context or the size of the numbers.
- They look for patterns and relationships, presenting information and results in a clear and organised way.

