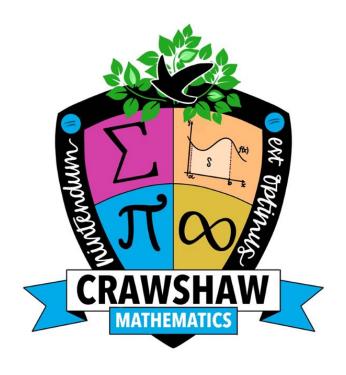
# Crawshaw Academy



# Knowledge Organisers Year 9

A framework for effective home learning

Mathematics provides students with powerful ways to describe, analyse, change and improve the world. The mathematics department at Crawshaw Academy aims to spark a passion in mathematics for all students, no matter what their starting point is, through the beauty of discovering patterns, making connections and looking for the 'why' behind mathematical formulae.



We want our students to:

#### **EXCELLENCE:**

- •Strive to improve and progress each lesson, allowing themselves to achieve their personal best in mathematics.
- •Develop the skills to understand science, technology and engineering as well as everyday tasks essential for keeping safe and healthy and maintaining their own economic well-being.

#### **PURPOSE:**

- •Tackle rich and diverse problems fluently and make reasoned decisions based on their deep understanding.
- •Share our passion for mathematics and have the belief that by working hard at mathematics they can succeed and that making mistakes is to be seen not as a failure but as a valuable opportunity for new learning.
- Apply reason to all that they do, determined to achieve their goals.

#### **AMBITION:**

- •Strive to develop a curiosity for mathematics through our passion for the subject by having access to mathematics that is both challenging and relevant to everyday life, with an emphasis on problem solving.
- •Become fully participating citizens in an ever-changing society who are able to think mathematically, reason and solve problems, and assess risks in a range of contexts.
- •Access high quality teaching and learning, so they are encouraged to develop into thinking individuals who are mathematically literate and can achieve their potential.
- Have the desire and enthusiasm to aim higher, with motivation to succeed in our plans for the future.

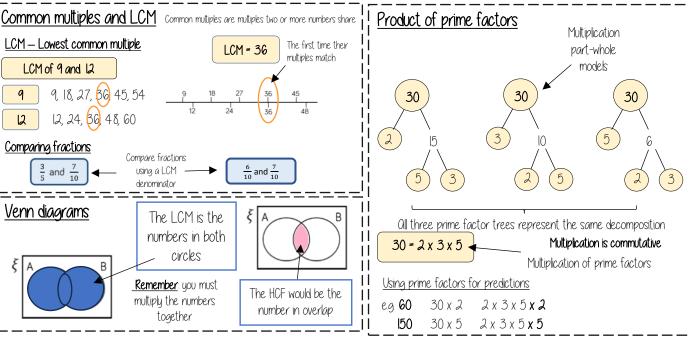
#### Year 9 HALF TERM 1 (Autumn 1):

N11 - PROPERTIES OF NUMBER

N12 - PERCENTAGES

67 – AREA AND VOLUME

#### Factors, multiples and primes - M823, M322, M227, M698 YFAR 9 — AUTUMN Write a number as a product of prime factors - MIO8 Use prime factors (E) - M365 Highest common factor (HCF) and lowest common multiple (LCM) - M365, M227, M698 CRAWSHAW Venn diagrams - M829 Use a Venn diagram to calculate the HCF and LCM - M365, M829 N11 - PROPERTIES OF NUMBER Integers, real numbers and rational numbers - M763, M527, M704, M522 Introduction to surds (E) - M135, U338, U633 What do I need to be able to do? $\Box \land \circ \times$ **Multiples** — Numbers obtained by multiplying a number by an integer. Step | Factors, multiples and primes Factors — Numbers that divide exactly into another number. **Step 2** Write a number as a product of prime factors **Prime** — a number with only two factors: I and itself. **Step 3** Use prime factors (E) **Prime factorisation** — Writing a number as a product of prime numbers. Step 4 (HCF) and (LCM) **Square** – O number multiplied by itself (e.g., $4 = 2^2$ ). Keuwords Step 5 Venn diagrams **Cube** – On number raised to the power of three (e.g., $8 = 2^3$ ). Step 6 Use a Venn diagram to calculate the HCF and **Root** — The inverse operation of powers (square root, cube root). HCF — Highest Common Factor; largest factor shared by two numbers. LCM LCM — Lowest Common Multiple; smallest multiple shared by two numbers. **Step 7** Integers, real numbers and rational numbers **Venn diagram** — O diagram showing common and distinct factors/multiples. Step 8 Introduction to surds (E) Simplify — Making calculations easier by reducing numbers using factors. Prime numbers Factors Multiples The "times table" of a given number Integer Orraus can help represent factors All the numbers in this lists below are multiples of 3. Factors of 10 Only has 2 factors $10 \times 10 \times 10$ 5 x 2 or 2 x 5 and itself 3, 6, 9, 12, 15... 3x, 6x, 9x ... The first prime number The number itself is The only even prime number Factors and expressions This list continues and doesn't always a factor |x| |x| |x| |x| |x| |x|Factors of 6x x could take any value and Learn or how-to quick recall... Non example of a multiple as the variable is a multiple of 6, x, 1, 6x, 2x, 3, 3x, 3 $6x \times 1$ OR $6 \times x$ 3 the answer will also be a $x \mid x$ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29... 4.5 is not a multiple of 3 multiple of 3 $x \mid x$ because it is 3 x 1.5 $2x \times 3$ Square and triangular numbers Common factors and HCF I is a common factor of all numbers Square numbers Representations are useful to understand Common factors are factors two or more numbers share a square number n<sup>2</sup> HCF — Highest common factor 1, 4, 9, 16, 25, 36, 49, 64 ... Common factors HCF of 18 and 30 odd odd even (factors of both numbers) Triangular numbers 1,2,3,6 Representations are useful — an extra counter is added to each new row 1, 2, 3, 6, 9, 18 18 Odd two consecutive triangular numbers and get a square number 1, 2, 3, 5, 6, 10, 15, 30 30 П l 3, 6, 10, 15, 21, 28, 36, 45.. 6 is the biggest factor they share Product of prime factors Multiplication The first time their part-whole LCM = 36 multiples match models LCM of 9 and 12 9, 18, 27, 86, 45, 54 30 12, 24, 36, 48, 60



Percentage increase and decrease - M476, M533, U773, U671 YFAR 9 — AUTUMN Express a change as a percentage—U278 Find the original value after a percentage change —U286 Solve problems with percentages (non-calculator) - M437, M476, U554, U773 N12 - PERCENTAGES Solve problems with percentages (calculator) - M905, M533, U349, U671 Repeated percentage change — U332, U988Understand interest — U533 What do I need to be able to do? Simple interest - U533 Compound interest - U332 Step | Percentage increase and decrease  $\Pi \wedge \Omega \rangle$ **|Step 2** Express a change as a percentage Keywords  $\Delta \circ \times \Box$ **1 Step 3** Find the original value after a хпло **Percent**: parts per 100 — written using the / symbol I percentage change Decimal: a number in our base 10 number sustem. Numbers to the right of the decimal place are called decimals. Step 4 Solve problems with percentages (non-Fraction: a fraction represents how many parts of a whole value you have. calculator) Equivalent: of equal value. Step 5 Solve problems with percentages Reduce: to make smaller in value. I (calculator) Growth: to increase / to grow. Step 6 Repeated percentage change Integer: whole number, can be positive, negative or zero. Step 7 Understand interest Invest: use money with the goal of it increasing in value over time (usually in a bank). Step 8 Simple interest Multiplier: the number you are multiplying by Step 9 Compound interest **Profit**: the income take away any expenses/costs. FDP Equivalence Converting FDP Percentage 100% = a whole = 100 hundredths 70 out of 100 This also 70 hundredths whole: squares = 70% 100 10 hundredths 70 "hundredths" 70 - 100 10 out of 100 = 7 "tenths" Using a 10% 07 calculator One hundredth Be careful of recurring decimals = 0.10(one whole split into 100 equal parts) = 0.3333333 e.g ST D Convert to a decimal 3 = 0.3 tenths hundrealths 🔺 × 100 converts to a The dot above the 3 percentage Percentage change Increase Percentage Increase/ Decrease 100% Tbought a phone for £200. Decrease a year later sold it for £125. 100% all values of 1002 Increase by 12% change compare £200 Decrease by 58% |00/ + |2/ = |2/Multiplier to the ORIGINAL 42% More than I 100 + 0.12 = 1.12value Multiplier Percentage loss 100 - 0.58 = 0.42 × 100 = 375/ 40% of my number is 16 Reverse 140% of my number is Difference in values What am I thinking of? 84. What is the original Percentages Original value number? Original Number (100%) Original Number (100%) Simple Interest 4 4 4 4 For each year of investment the interest remains the same 6 6 6 6 6 6 6 6 40% = 16 16 Principal amount ×Interest Rate × Years 10% - 4 140/ = 84 |00| = 40Try to scale down to 10% or 1% and then scale 10%-6 Principal amount is the amount invested in the account. e.g. Invest £100 at 30% simple interest for 4 years 100% = 60  $100 \times 30 \times 4 = £120$ This account earned Compound Interest 300 100 £120 interest. 300 Interest is added to the current value of investment at the end of 250 Ot the end of year 250 each year so the next year's interest is greater. 4 they have £220 200 200 150 Money Money 150 Principal amount × Multiplier Years 100 e.g. Invest £100 at 30% compound interest for 4 years 50 This account has £285.61 in total at the  $100 \times 1.30^4 = £285.61$ 

## YFAR 9 — AUTUMN

Nets - M518 Orea of a 2-D shape - M390, M610, M705, M269 Orea and circumference of a circle - M23 I, M169

Surface area of cubes and cuboids — M534 Surface area of a triangular prism (E) — M661 Surface area of a cylinder (E) - U464 Volume of a prism - M722

Volume of a cylinder — U915 Volume of cones, pyramids and spheres (E) — U116, U484, U617 Convert metric units of area and volume (E) - M728, M465, U248, U468

#### 67 - ARFA AND VOLUME

#### l What do I need to be able to do?

**Ister I** Nets

.Step 2 Orea of a 2-D shape

Step 3 Orea and circumference of a circle

iStep 4 Surface area of cubes and cuboids

**IStep 5** Surface area of a triangular prism (E)

**|Step 6** Surface area of a culinder (E)

Step 7 Volume of a prism

Step 8 Volume of a cylinder

Step 9 Volume of cones, pyramids and spheres (E)

Step 10 Convert metric units of area and volume (E)

### Keuwords

2D: two dimensions to the shape e.g. length and width

3D: three dimensions to the shape e.g. length, width and height

Vertex: a point where two or more lines segments meet

Edge a line on the boundary joining two vertex

Face: a flat surface on a solid object

Cross-section: a view inside a solid shape made by cutting through it

**Plan**: a drawing of something when drawn from above (sometimes birds eye view)

Perspective: a way to give illustration of a 3D shape when drawn on a flat surface.

#### Name 2D & 3D shapes













Trapezium

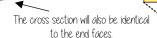




Parallelogram



#### Recognise prisms O solid object with two identical ends and flat sides

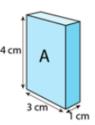


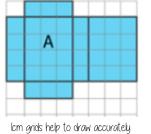
Δ O X D

 $\times \Box \Delta O$ 

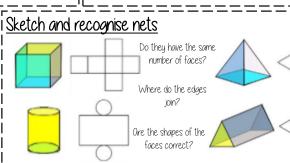
O cylinder although with very similar properties does not have flat faces so is not categorised as a prism

## Nets of cuboids

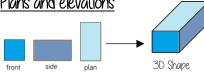




Visualise the folding of the net. Will it make the cuboid with all sides touching

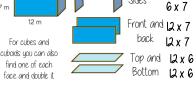


## Plans and elevations



The direction you are considering the shape from determines the front and side views

#### **SUrface area** Sketching nets first helps you visualise all the sides that will form the overall surface area 6 x 7





## Orea of 2D shapes







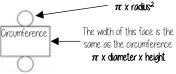








# Surface area - culinders



The area of the circle

 $2 \times \pi \times \text{radius}^2 + \pi \times \text{diameter} \times \text{height}$ 

#### Volumes

Volume is the 3D space it takes up — also known as capacity if using liquids to fill the

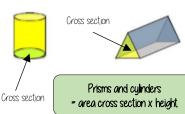
# Counting cubes

## Some 3D shape volumes can be

calculated by counting the number of cubes that fit inside the shape.

#### Cubes/Cuboids = base x width x height

Remember multiplication is commutative



Height can also be described as depth

Oreas - square units Volumes — cube units

Oreas and volumes can be left in terms of pi  $\pi$ 

Mathematics provides students with powerful ways to describe, analyse, change and improve the world. The mathematics department at Crawshaw Academy aims to spark a passion in mathematics for all students, no matter what their starting point is, through the beauty of discovering patterns, making connections and looking for the 'why' behind mathematical formulae.



We want our students to:

#### **EXCELLENCE:**

- •Strive to improve and progress each lesson, allowing themselves to achieve their personal best in mathematics.
- •Develop the skills to understand science, technology and engineering as well as everyday tasks essential for keeping safe and healthy and maintaining their own economic well-being.

#### **PURPOSE:**

- •Tackle rich and diverse problems fluently and make reasoned decisions based on their deep understanding.
- •Share our passion for mathematics and have the belief that by working hard at mathematics they can succeed and that making mistakes is to be seen not as a failure but as a valuable opportunity for new learning.
- Apply reason to all that they do, determined to achieve their goals.

#### **AMBITION:**

- •Strive to develop a curiosity for mathematics through our passion for the subject by having access to mathematics that is both challenging and relevant to everyday life, with an emphasis on problem solving.
- •Become fully participating citizens in an ever-changing society who are able to think mathematically, reason and solve problems, and assess risks in a range of contexts.
- •Access high quality teaching and learning, so they are encouraged to develop into thinking individuals who are mathematically literate and can achieve their potential.
- Have the desire and enthusiasm to aim higher, with motivation to succeed in our plans for the future.

#### Year 9 HALF TERM 2 (Autumn 2):

A9 - EQUATIONS, INEQUALITIES AND FORMULAE

N13 - FRACTIONS

R4 - RATES

N14 - STANDARD FORM

# YFAR 9 — AUTUMN

A9 - EQUATIONS, INEQUALITIES CRAWSHI AND FORMULAE

Solve equations and inequalities - M707, MT18, U325, U759 Solve equations and inequalities with brackets — M902, U337 Inequalities with negative numbers (E) — U738

Solve equations and inequalities with unknowns on both sides - M554, U870

Solve problems with equations and inequalities - M957, U599 Substitute into formulae and equations — M208, M979, U585 Change the subject of a formula (one-step) - U675



 $\triangle \circ \times \Box$ 

#### What do I need to be able to do?

Step I Solve equations and inequalities

Step 2 Solve equations and inequalities with brackets

Step 3 Inequalities with negative numbers (E)

Step 4 Solve equations and inequalities with unknowns on both sides

1Step 5 Solve problems with equations and inequalities

Step 6 Substitute into formulae and equations

Step 7 Change the subject of a formula (one-step)

Step 8 Change the subject of a formula (two-step)

Step 9 Change the subject of complex formula (E)

## Keywords

**Inequality**: an inequality compares who values showing if one is greater than, less than or

equal to another

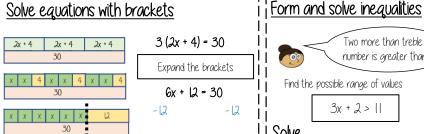
Variable: a quantity that may change within the context of the problem Rearrange: Change the order

**Inverse operation**: the operation that reverses the action

Substitute: replace a variable with a numerical value

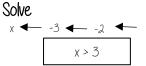
Solve: find a numerical value that satisfies an equation

## Solve equations with brackets



6x = 18

Two more than treble my number is greater than 11 Find the possible range of values 3x + 2 > 11



## Inequalities with negatives





-15 > 3x÷3

-5 > x /

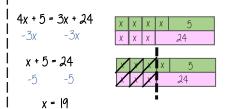
smaller than -5 CHECK IT!

> 2 - 3(-6) = 20TRUE/CORRECT

x is true for any value

#### Inequalities with unknown on both sides Equations with unknown on both sides Solving inequalities has the same method as

 $x = 3 = \frac{1}{3}$ 



5(x+4)<3(x+2)5x + 20 < 3x + 6

5(-8+4)<3(-8+2) 2x + 20 < 6 2x < - 14 5(-4)<3(-6) -20<-18 x < - 7

equations

Method 2

Check it!

:20 IS smaller than - 18

2 - 3x > 17– 3x > 15 ÷-3

x > -5

Keep the negative x

inequality

x is true for any value bigger than -5

This cannot be

true...

When you multiply or divide x by a negative you need to reverse the

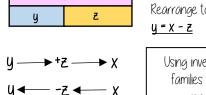
## Formulae and Equations

Formulae — all expressed in symbols

Substitute in values

**Equations** — include numbers and can be solved |

## Rearranging Formulae (one step)



Rearrange to make y the subject.

Rearranging can also be checked by substitution. Language of rearranging...

X = y + Z

Make XXX the subject

Using inverse operations or fact families will guide you through rearranging formulae

Change the subject

Rearrange

#### Rearranging Formulae (two step)

In an equation (find x) In a formula (make x the subject) xy - s = a4x - 3 = 9+ 5 + 5 +3 xu = a + s4x = 12 ÷ y ÷ y X = a + S

The steps are the same for solving and rearranging

Rearranging is often needed when using y = mx + c

e.g. Find the gradient of the line 2y - 4x = 9Make y the subject first y = 4x + 9

Gradient = 4= 2

YEAR 9 — AUTUMN N13 - FRACTIONS



Odd and subtract fractions - M835, M931

Multiply and divide fractions - M157, M110, M197, M265 Fraction of an amount - M695, M684

## What do I need to be able to do?

Step I Odd and subtract fractions

Step 2 Multiply and divide fractions

Step 3 Fraction of an amount

## Keywords

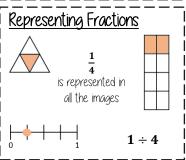
**Numerator**: the number above the line on a fraction. The top number. Represents how many parts are

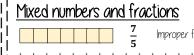
**Denominator**: the number below the line on a fraction. The number represent the total number of parts Equivalent: of equal value

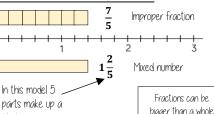
Mixed numbers: a number with an integer and a proper fraction Improper fractions: a fraction with a bigger numerator than denominator

Substitute: replace a variable with a numerical value

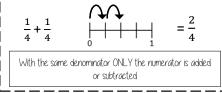
Place value: the value of a digit depending on its place in a number. In our decimal number sustem, each place is 10 times bigger than the place to its right





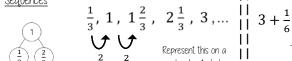


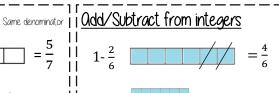




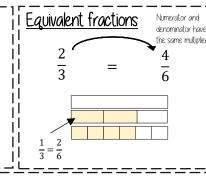




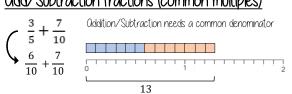








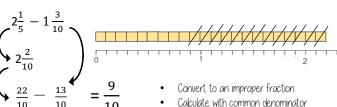
## Odd/Subtraction fractions (common multiples)





Use equivalent fractions to find a common multiple for both denominators

## Odd/Subtraction fractions (improper and mixed)

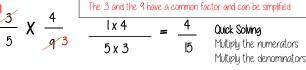




Partitioning method

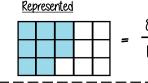
$$2\frac{1}{5} - 1\frac{3}{10} = 2\frac{2}{10} - 1\frac{3}{10} = 2\frac{2}{10} - 1 - \frac{3}{10} = 1\frac{2}{10} - \frac{3}{10} = \frac{9}{10}$$

## Quick Multiplying and Cancelling down



Dividing any fractions Remember to use reciprocals





## YFAR 9 — AUTUMN

R4 - RATES



Sparx Maths

Speed, distance and time — U.5.1, U.90.2, U.5.85, U.144 Distance-time graphs — U.40.3, U.914, U.46.2, U.966 Solve flow problems and their graphs — U.65.2, U.86.2, U.896 Rates of change and their units — U.25.6, U.15.1, U.52.7, U.91.0 Convert compound units (E) — U.38.8, U.24.8, U.46.8

#### What do I need to be able to do?

**Step 1** Speed, distance and time **Step 2** Distance-time graphs

**Step 3** Solve flow problems and their

graphs

Step 4 Rates of change and their units i

Step 5 Convert compound units (E)

## Keywords

Convert: change

Mass: a measure of how much matter is in an object. Commonly measured by weight.

Origin: the coordinate (0, 0)

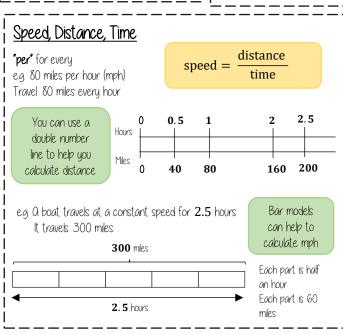
Volume: the amount of 3D space a shape takes up

Substitute: putting numbers where letters are — replacing numbers into a formula

Speed, Distance, Time

Before calculations — make sure you are

working in the same units as the speed



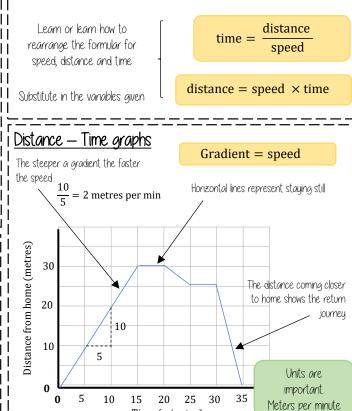
 $mass = volume \times density$ 

This will fill at a constant rate, then as the space decreases it will

speed up and the neck of the bottle fill at a faster constant speed

volume =

Orea of cross



Time (minutes)

## Flow problems & graphs

Density, Mass, Volume

volume

volume of prism

density =



Units are important.
Ensure any volume
calculations are the same unit
as the rate of flow

density

Depth



Revisit your conversions between units of length and capacity

Exchange rates: euros per pounds

÷ 60

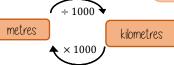
 $\times$  60

hours

minutes

Density: mass per volume

Speed: miles per hour



## YFAR 9 — A IITIIMN

#### N14 - STANDARD FORM



Numbers in standard form - M7 19, U330 Compare and order numbers in standard form M719, U330 Multiply and divide numbers in standard form - U264 Odd and subtract numbers in standard form - U290

#### What do I need to be able to do?

**Step I** Numbers in standard form Step 2 Compare and order numbers in standard form Step 3 Multiply and divide numbers

in standard form Step 4 Odd and subtract numbers in standard form

## Keywords

Standard (index) Form: O sustem of writing very big or very small numbers

**Commutative**: an operation is commutative if changing the order does not change the result. Base: The number that gets multiplied by a power

**Power**: The exponent — or the number that tells you how many times to use the number in multiplication **Exponent**: The power — or the number that tells uou how many times to use the number in multiplication.

**Indices**: The power or the exponent.

Negative: O value below zero

#### Positive powers of 10

l billion - 1 000 000 000 Oddition rule for indices  $10^a \times 10^b = 10^{a+b}$ 

Subtraction rule for indices  $10^a + 10^b = 10^{a-b}$ 

## Standard form with numbers > 1

Ony number A x 10 n between I and less than 10

Non-example Example 0.8 x 10 4 3.2 x 10 4

 $= 3.2 \times 10 \times 10 \times 10 \times 10$ 

ll = 32000

Negative powers of 10

0.001 10 100 1000 101 10-1 10-3 1 x 10-3

Ony value to the power O always = 1

Negative powers do not indicate negative solutions

плох

 $\triangle \circ \times \Box$ хПΛО

## Numbers between 0 and 1

| 0.054                  | 1   | $\frac{1}{10}$ | $\frac{1}{100}$ | $\frac{1}{1000}$ |
|------------------------|-----|----------------|-----------------|------------------|
| $= 5.4 \times 10^{-2}$ | 100 | 10-1           | 10-2            | 10-3             |
|                        | 0   | 0              | 5               | 4                |

O negative power does not mean a negative answer — it means a number closer to 0

## Order numbers in standard form

 $6.4 \times 10^{-2}$  $2.4 \times 10^{2}$ 

 $1.3 \times 10^{-1}$  $3.3 \times 10^{0}$ 

5.3 x 10<sup>07</sup>

I ook at the power first will the number be = > or < than I

0.13 Use a place value grid to compare the 240

#### Mental calculations

6.4 x 10<sup>2</sup> x 1000 Not in Standard Form  $6.4 \times 10^{2} \times 10^{3}$ 

Use addition for indices rule = 6.4 x 10<sup>5</sup>

 $(2 \times 10^3) \div 4$ 

Divide the values  $= (2 \div 4) \times 10^3$  $= 0.5 \times 10^3$ 

#### (8)x 10<sup>5</sup> x(3) Not in Standard Form = 24 x 10<sup>5</sup>

0.064

=  $2.4 \times 10^{1} \times 10^{5}$  Use addition for

indices rule = 2.4 x 106

Remember the layout for standard form

. Ony integer Onu number A x 10 n between I and less than 10

For multiplication and division you can look at the

values for A and the powers of 10 as two

separate calculations

### **Oddition and Subtraction**

standard from at the end 6 x 105 + 8 x 105 Method I

= 600000 + 800000 = |400000

= 1.4 x 10<sup>5</sup> More robust method

Less room for misconceptions Easier to do calculations with negative indices

Can use for different powers

Method 2 = (6 + 8) x 105

Tip: Convert into ordinary numbers first and back to

14 x 10<sup>5</sup>

1.4 x 101 x 105 = 1.4 x 10<sup>5</sup>

Only works if the powers are the same

## Multiplication and division

Division auestions <u>1.5</u> x 10<sup>5</sup> can look like this  $0.3 \times 10^{3}$ 

 $((1.5)x 10^5) \div (0.3)x 10^3)$ 

Revisit addition and subtraction laws for indices they are needed for the calculations

15 + 0.3 x 10<sup>5</sup> + 10<sup>3</sup>

 $=5 \times 10^{2}$ 

Oddition law for indices  $a^m \times a^n = a^{m+n}$ 

Subtraction law for indices a m ÷ a n = a m - n

## Using a calculator

Press

II Input 14 and press  $\boxed{x10^x}$  Then press 5 (for the power)

Input 3.9 and press **x10**\* Then press 3 (for the power)

Use a calculator to work out this 14 x 10<sup>5</sup> x 3.9 x 103 question to a suitable degree of accuracy

This is not the -

final answer

This gives you the solution

Click calculator for video tutorial

To put into standard form and a suitable degree of accuracy

Press SHIFT (SETUP) and then press 7 for sci mode Choose a degree of accuracy so in most cases press 2

Onswer: 5.5 x 108

Mathematics provides students with powerful ways to describe, analyse, change and improve the world. The mathematics department at Crawshaw Academy aims to spark a passion in mathematics for all students, no matter what their starting point is, through the beauty of discovering patterns, making connections and looking for the 'why' behind mathematical formulae.



We want our students to:

#### **EXCELLENCE:**

- •Strive to improve and progress each lesson, allowing themselves to achieve their personal best in mathematics.
- Develop the skills to understand science, technology and engineering as well as everyday tasks essential for keeping safe and healthy and maintaining their own economic well-being.

#### **PURPOSE:**

- •Tackle rich and diverse problems fluently and make reasoned decisions based on their deep understanding.
- •Share our passion for mathematics and have the belief that by working hard at mathematics they can succeed and that making mistakes is to be seen not as a failure but as a valuable opportunity for new learning.
- Apply reason to all that they do, determined to achieve their goals.

#### **AMBITION:**

- •Strive to develop a curiosity for mathematics through our passion for the subject by having access to mathematics that is both challenging and relevant to everyday life, with an emphasis on problem solving.
- •Become fully participating citizens in an ever-changing society who are able to think mathematically, reason and solve problems, and assess risks in a range of contexts.
- •Access high quality teaching and learning, so they are encouraged to develop into thinking individuals who are mathematically literate and can achieve their potential.
- Have the desire and enthusiasm to aim higher, with motivation to succeed in our plans for the future.

#### Year 9 HALF TERM 3 (SPRING 1):

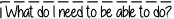
N15 - MATHS AND MONEY

A10 - STRAIGHT LINE GRAPHS

R5 - RATIO AND PROPORTION

## YEAR 9 - SPRING

#### N15 - MATHS AND MONFY



I Step I Understand a bank account

Step 2 Spending

Step 3 Ways to pay

Step 4 Ways to save

Step 5 Jobs and pay

Step 6 Investing

Step 7 Borrowing (buying a house)

**Step 8** Running a house or a business

Step 9 Budgeting

Step 10 Borrowing (loans)

Step 11 Spending overseas

Step 12 Insurance





### Keywords

Credit: money being placed into a bank account

Debit: money that leaves a bank account

Balance: the amount of money in a bank account

Expense: a cost/outgoing.

Deposit: an initial payment (often a way of securing an item you will later pay for)

Multiplier: a number you are multiplying by (Multiplier more than I = increasing, less than I = decreasing)

Per Onnum: each year

Currency: the type of money a country uses.

Unitary: one — the cost of one.

#### Bills and Bank Statements

Bills — tell you the amount items cost and can show how

much money you need to pay.

Some can include a total

Look for different units (Is it in pence or pounds)

| Menu | Price |
|------|-------|
| Milk | 89p   |
| Tea  | £1.50 |

#### Bank Statements

Bank statement can have negative balances if the money spent is higher than the money coming into the account

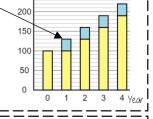
| Date                     | Description | Credit | Debit | Balance |
|--------------------------|-------------|--------|-------|---------|
| 19th<br>Sept             | Salary      | £1500  |       | £1500   |
| l9th<br>Sept             | Mortgage    |        | £600  | £900    |
| 25 <sup>th</sup><br>Setp | Bday Money  | £15    |       | £915    |

#### Simple Interest For each year of investment the interest remains the same -

Principal amount ×Interest Rate × Years Principal amount is the amount invested in the account.

 $100 \times 30 \times 4 = £120$ 

e.g. Invest £100 at 30% simple interest for 4 years This account earned £120 interest Ot the end of year 4 they have £220



Money 300

250

#### Compound Interest

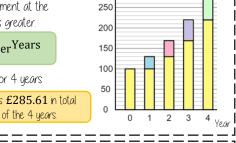
Interest is added to the current value of investment at the end of each year so the next year's interest is greater.

Principal amount × Multiplier Years

eg Invest £ 100 at 30% compound interest for 4 years

 $100 \times 1.3^4 = £285.61$ 

This account has £285.61 in total at the end of the 4 years



Pounds

Dollars

Furos

#### Value Odded Tax (VOT)

VOT is payable to the government by a business. In the UK VOT is 20% and added to items that are bought.

Essential items such as food do not include VOT

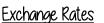
#### Wages and Taxes

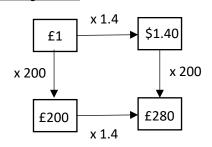
Salaries fall into tax brackets — which means they pay this much each month from their salary.

| Taxable Income      | Tax Rate |
|---------------------|----------|
| £12 501 to £50 000  | 20%      |
| £50 001 to £150 000 | 40%      |
| over £150 000       | 45%      |

Over time:

Time and a half — means 15 times their hourly rate ▮ Double — 2 times their hourly rate





When making estimates it is also useful to use estimates to check if our solution is reasonable

Use inverse operations to reverse the exchange process

#### Common Currencies United Kingdom United States of Omerica \$ Europe

#### Unit Pricing

4 Oranges £1

5 cupcakes £1.20

4 = £1.005 = £1.202 = £0.50

Cost per Unit.

1 = £0.25

1 = £0.20

To calculate unit per cost you divide by the cost.

Cupcakes are the best value as one item has the cheapest value

There is a directly proportional relationship between the cost and number of units.



Lines, parallel to the axes, y = x and y = -x - M797Explore gradients - U3 15, U74 | Explore intercepts - U669

y = mx + c - U315, U74 |Rearrange equations to the form y = mx + c (E) - U315, U669 Find the equation of a line from a graph - U3 15, U848, U477

Interpret gradient and intercepts of real-life graphs - U652, U862, U669

<u>Graph inequalities (E) - U747</u>

#### What do I need to be able to do?

Step I Lines, parallel to the axes, y=x and y=-x

Step 2 Explore gradients

**Step 3** Explore intercepts

Step 4 y=mx+c

Step 5 Rearrange equations to the form y=mx+c

Step 6 Find the equation of a line from a graph i Step 7 Interpret gradient and intercepts of real-

life araphs

Step 8 Graph inequalities (E)

## Keywords

Gradient: the steepness of a line

**Intercept**: where two lines cross. The y-intercept: where the line meets the y-axis.

Parallel two lines that never meet with the same gradient.

**Co-ordinate**: a set of values that show an exact position on a graph.

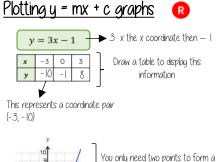
Linear: linear graphs (straight line) — linear common difference by addition/subtraction **Osumptote:** a straight line that a graph will never meet.

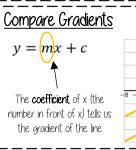
y coordinate is -2

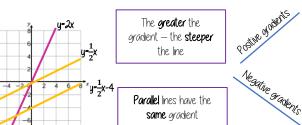
Reciprocal: a pair of numbers that multiply together to give 1.

Perpendicular: two lines that meet at a right angle.

#### ines parallel to the axes All the points on this line or negative value including a x coordinate of 10 Lines parallel to the y axis take the form xntersection = a and are vertical points Lines parallel to the **x** axis take the form **u** = a and are horizontal Oll the points on this line have eg (3, -2) (7, -2) (-2, -2) all lay on this line because the a y coordinate of -2









Remember to join the points to make a line

straiaht line

Plotting more points helps you decide

if your calculations are correct (if

they do make a straight line)

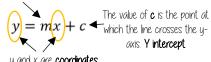
плох

ΔΟΧ□

#### Compare Intercepts y = mx + (c) which the line crosses the yy=2x + 2 axis. Y intercept The coordinate of a y intercept will always be (0,c) Lines with the same uintercept cross in the **same**



The **coefficient** of x (the number in front of x) tells us the gradient of the line



A plumber charges a £25 callout fee, and then £12.50 for every hour.

In real life graphs like this values will always be positive because they

Complete the table of values to show the cost of hiring the plumber.

measure distances or objects which cannot be negative.

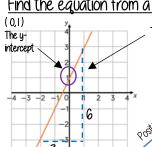
The equation of a line can be rearranged: E.g. u = c + mx c = y - mxIdentify which coefficient you are identifying or

he y-intercept shows th

minimum charge.

The gradient represents the price per mile

## Find the equation from a graph



The Gradient  $\frac{6}{3} = 2$ 

y = 2x + 1

The direction of the line indicates a positive Negative gradients

Real life graphs

II <u>Direct Proportion graphs</u> To represent direct proportion the graph must start at the origin.

When you have 0 pens this has 0 cost. The gradient shows the price per pen

A box of pens costs £2.30 Complete the table of values to show the cost of buying boxes of pens. £2.30 Cost (£)

## YFAR 9 - SPRING

### R5 - RATIO AND PROPORTION

Direct proportion - U721

Direct proportion and conversion graphs - U721, U640, U652 Inverse proportion - U357, U364

Inverse proportion graphs (E) - U238

Ratio problems (whole or part given) - U577, U753 Solve problems with ratio and algebra (E) - U676, U865

#### What do I need to be able to do?

Step | Direct proportion

Step 2 Direct proportion and conversion

i araphs

1 Step 3 Inverse proportion

Step 4 Inverse proportion graphs (E)

Step 5 Ratio problems (whole or part given)

Step 6 Solve problems with ratio and

l alaebra (E)

### Keywords

**Proportion**: a comparison between two numbers

Ratio: a ratio shows the relative size of two variables

Direct proportion: as one variable is multiplied by a scale factor the other variable is multiplied by the same scale factor.

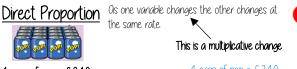
**Inverse proportion:** as one variable is multiplied by a scale factor the

other is divided by the same scale factor.

# 4 cans of pop = £2.40

the same rate.

This multiplier is the same In the same way that this would be for ratio



Sometimes this is easiest if you work out how much one unit is worth first eg I can of pop = £0.60

#### Conversion Graphs Compare two variables

miles

Labelling of both axes

is vital

This is always a straight line because as one variable increases so does the other at the same rate

To make conversions between units you need to find the point to compare — then find the associated point by using your graph. Using a ruler helps for accuracy

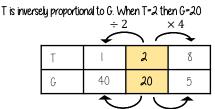
Showing your conversion lines help as a "check" for solutions

## Inverse Proportion Os one variable is multiplied by a scale factor the other is divided by the same scale factor

Examples of inversely proportional <u>relationships</u>

Time taken to fill a pool and the number of taps running

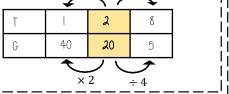
Time taken to paint a room and the number of workers



### Best Buys

Have a directly proportional relationship

To calculate best buys you need to be able to compare the cost of one unit or units of equal amounts



Shop A 4 cans for £1,20

Shop **B** 3 cans for 93p

ΠΔΟΧ

ΔΟΧ Ο Χ Ο Δ Ο Δ

£1.20 ÷ 4

£0.93 ÷ 3 I can is £0.31

Cost per item

I can is £0.30 Or 30p

0r310

Shop Ais the best value as it is Ip cheaper per can of pop

Shop A 4 cans for £120

3 cans for 93p

4 ÷ £1.20

 $3 \div £0.93$ £1 buus 3,23

Cost per pound

£1 buus 3.333 cans of pop

cans of pop

Shop A is still shown as being the best value but pay attention to the unit you are calculating, per item or per pound

> Best value is the most product for the lowest price per unit

### iSharing a whole into a given ratio

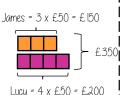
James and Lucy share £350 in the ratio 3:4. Work out how much each person earns

Model the Question James James: Lucu 3 : 4 Lucu I Find the value of one part £350 + 7 = £50

Whole: £350 7 parts to share between (3 James, 4 Lucy)

#### Put back into the question James: Lucu

 $\binom{1}{x_{50}} 3 : 4_{x_{50}}$ ►£ 150:£200

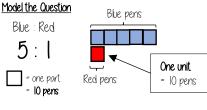


= one part

£50

## 11 Finding a value given 1:n (or n: 1)

Inside a box are blue and red pens in the ratio 5:1. If there are 10 red pens how many blue pens are there?



#### Put back into the question Blue pens = $5 \times 10 = 50$ pens

Red pens = 1 x 10 = 10 pens

There are 50 Blue Pens

Mathematics provides students with powerful ways to describe, analyse, change and improve the world. The mathematics department at Crawshaw Academy aims to spark a passion in mathematics for all students, no matter what their starting point is, through the beauty of discovering patterns, making connections and looking for the 'why' behind mathematical formulae.



We want our students to:

#### **EXCELLENCE:**

- •Strive to improve and progress each lesson, allowing themselves to achieve their personal best in mathematics.
- Develop the skills to understand science, technology and engineering as well as everyday tasks essential for keeping safe and healthy and maintaining their own economic well-being.

#### **PURPOSE:**

- •Tackle rich and diverse problems fluently and make reasoned decisions based on their deep understanding.
- •Share our passion for mathematics and have the belief that by working hard at mathematics they can succeed and that making mistakes is to be seen not as a failure but as a valuable opportunity for new learning.
- Apply reason to all that they do, determined to achieve their goals.

#### **AMBITION:**

- •Strive to develop a curiosity for mathematics through our passion for the subject by having access to mathematics that is both challenging and relevant to everyday life, with an emphasis on problem solving.
- •Become fully participating citizens in an ever-changing society who are able to think mathematically, reason and solve problems, and assess risks in a range of contexts.
- •Access high quality teaching and learning, so they are encouraged to develop into thinking individuals who are mathematically literate and can achieve their potential.
- Have the desire and enthusiasm to aim higher, with motivation to succeed in our plans for the future.

#### Year 9 HALF TERM 4 (Spring 2):

68 - CONSTRUCTIONS AND CONGRUENCE

69 - SIMILARITY

A11 - ALGEBRAIC MANIPULATION

## YEAR 9 - SPRING

## 68 - CONSTRUCTIONS AND CONGRUENCE



Draw and measure angles — M33 | Construct and interpret scale drawings - MTI2 Construct triangles using QSQ, SQS and SSS - UT87 Construct an angle bisector — U787 Construct a perpendicular bisector — U245

> Construct a perpendicular from or to a point — U245 Construct more complex polygons — U820

<u>Identify congruent figures — U790 Congruent triangles — U866</u>

#### What do I need to be able to do?

Step I Draw and measure angles

**Step 2** Construct and interpret scale drawings Step 3 Construct triangles using QSQ, SQS and SSS

Step 4 Construct an angle bisector

**Step 5** Construct a perpendicular bisector

**Step 6** Construct a perpendicular from or to a point

**Step 7** Construct more complex polygons

Step 8 Identify congruent figures

Step 9 Congruent triangles

## Keywords

Protractor: piece of equipment used to measure and draw angles

Locus: set of points with a common property

**Equidistant**: the same distance

Discorectangle: (a stadium) — a rectangle with semi circles at either end

Perpendicular: lines that meet at 90°

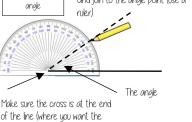
**arc**: part of a curve

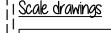
**Bisector**: a line that divides something into two equal parts

Congruent: the same shape and size

### Draw and measure angles

Make a mark at 35° with a pencil Draw a 35° Ond join to the angle point (use a





The car image is

For every 1cm on my image is

a picture of a car is drawn with a scale of 1:30

30cm in real life

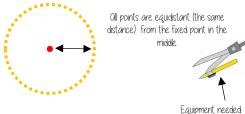
10cm lcm: 30cm



#### Locus of a distance from a point

If the point is in the corner

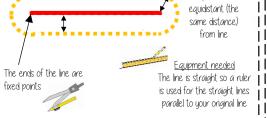
it can only make a quarter



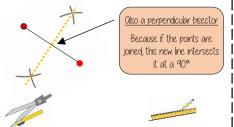
The radius is the distance from the fixed point

 $\triangle \circ \times \Box$ 

### ocus of a distance from a straight line



## Locus equidistant from two points



Join the intersections with a Keep the compass the same Oll points on this line are

size and draw two arcs from equidistant from both points

### Construct a perpendicular from a point

Use a compass and draw an arc that cuts the line. Use the

point to place the compass

Keep the compass the same distance and now use your new points to make new

interconnecting arcs

Connecting the arcs makes the bisecto

If P is a point on the line the steps are the same

## ocus of a distance from two lines

Constructina Trianales

Side, Ongle, Ongle

Side, Ongle, Side

Side, Side, Side

This cuts the angle in half From the anale vertex draw two arcs that cut the lines forming the angle

Keep the compass the same size and use the new arcs as centres to draw intersecting arcs in the middle

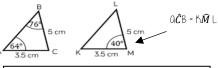
Olso an angle bisector

#### Conaruent flaures



Congruent figures are identical in size and shape — they can be reflections or rotations of each

Congruent shapes are identical — all corresponding sides and angles are the same size



Because all the angles are the same and OC=KM BC=LM trianales OBC and KLM are congruent

#### Congruent triangles

Side-side-side

Oll three sides on the trianale are the same size

#### Ongle-side-angle

Two angles and the side connecting them are equal in two trianales

#### Side-angle-side

Two sides and the angle in-between them are equal in two triangles (it will also mean the third side is the same size on both shapes)

Right angle-hypotenuse-side The triangles both have a right angle, the hupotenuse and one side are the same

## YFAR 9 - SPRING

## 69 - SIMILARITY



Recognise enlargement and similarity — U55 I Work out unknown lengths and angles in similar shapes — U578 Solve problems with similar triangles (E) — U887 Ratio in right-angled triangles (E) — U605

#### What do I need to be able to do?

Step | Recognise enlargement and similarity

Step 2 Work out unknown lengths and angles in similar shapes

Step 3 Solve problems with similar trianales (E)

Step 4 Ratio in right-angled triangles

### Keywords

Enlarge: to make a shape bigger (or smaller) by a given multiplier (scale factor)

Scale Factor: the multiplier of enlargement

**Centre of enlargement**: the point the shape is enlarged from

Similar: when one shape can become another with a reflection, rotation, enlargement or translation.

Congruent: the same size and shape

Corresponding: items that appear in the same place in two similar situations

Parallel: straight lines that never meet (equal gradients)

#### Positive scale factors

Enlargement from a point

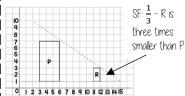
Enlarge shape A by SF 2 from (0,0)

The shape is enlarged by 2 The distance from the point enlarges by 2

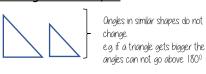
### Fractional scale factors

I Fractions less than I make a shape SMOLLER

R is an enlargement of P by a scale factor from centre of enlargement (15,1)



#### Identify similar shapes



Similar shapes

2:3

Compare

sides

8:12

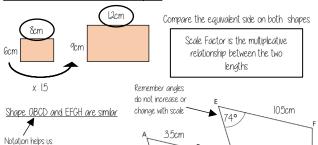
Scale Factor: Both sides on the bigger shape are 15 times bigger

Because co-interior angles have

2:3 Both sets of sides are in the same ratio

Co-interior angles

## Information in similar shapes



## Onales in parallel lines

Olternate anales

Because alternate anales are equal the highlighted angles are the same size

# a sum of 180° the highlighted angle is 110°

#### Corresponding angles

Because corresponding angles are equal the highlighted angles are the same size

Os angles on a line add up to 180° co-interior angles can also be calculated from applying alternate/correspondina rules

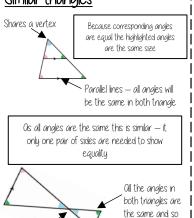
#### Similar triangles

**QB** and EF are corresponding

corresponding sides

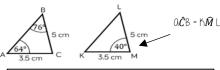
Vertically

opposite angles

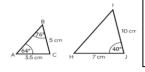


## Congruence and Similarity

Congruent shapes are identical — all corresponding sides and angles are the same size



Because all the angles are the same and OC=KM BC=LM triangles OBC and KLM are congruent



Because all angles are the same, but all sides are enlarged by 2 OBC and HU are

### Conditions for congruent triangles

Triangles are congruent if they satisfy any of the following conditions

Side-side-side

Oll three sides on the triangle are the same size

#### Ongle-side-angle

Two angles and the side connecting them are equal in two

#### Side-angle-side

Two sides and the angle in-between them are equal in two triangles (it will also mean the third side is the same size on both shapes)

#### Right angle-hypotenuse-side

The triangles both have a right angle, the hypotenuse and I one side are the same

## YFAR 9 — SPRING

### A11 - ALGEBRAIC MANIPULATION



Expand single brackets and simplify - U179 Factorise into a single bracket - U365

Expand double brackets - U768 Use identities - U582 Factorise quadratic expressions (E) - U178, U858, U963

Solve quadratic equations (E) - U228, U960, U589, U665 Expand triple brackets (E) - U606

#### What do I need to be able to do?

Step | Expand single brackets and simplify Step 2 Factorise into a single bracket

Step 3 Expand double brackets

Step 4 Use identities

Step 5 Factorise quadratic expressions (E)

Step 6 Solve quadratic equations (E) **Step 7** Expand triple brackets (E)

## Keywords

Simplifu: grouping and combining similar terms

Solution: a value we can put in place of a variable that makes the equation true

Variable: a symbol for a number we don't know yet.

**Equation**: an equation says that two things are equal — it will have an equals sign =

Expression: numbers, symbols and operators grouped together to show the value of something **Identitu:** On equation where both sides have variables that cause the same answer includes  $\equiv$ 

Linear: an equation or function that is the equation of a straight line

Inequality: an inequality compares two values showing if one is greater than, less than or equal to another.

### ! Multiply single brackets

iExpanding double brackets

be a quadratic equation.



Single: Where each term inside the bracket is multiplied by the term on the outside of the bracket.

$$\frac{1}{6x + 12}$$
  $3(2x + 4) = 6x + 12$ 

Double: Where each term in the first bracket is multiplied

by all terms in the second bracket.. O double bracket will

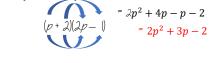
#### Factorise into a single bracket Try and make this the highest common factor The two values **multiply** together (also the

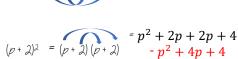
 $8x + 4 \equiv 4(2x + 1)$ 

### Factorising Quadratics

#### area) of the rectangle operation **I**Equation

Putting an expression back into brackets. To "factorise fully" means take out the HCF. add to find the Factorise:





middle term 2+4  $x^2 + 6x + 8$ 

the

middle

term

-3 + |

=(x+2)(x+4)

$$x^2-2x-3$$

Multiply to find the = (x-3)(x+1)

**ITerm** 

Identitu

thinas are equal

O statement that two

Expression

On equation where both sides have variables that cause the same answer includes ≡

Olgebraic constructs

a sentence with a minimum of

two numbers and one maths

Formula

a rule written with all

mathematical symbols

l e.g. area of a rectangle

## Expanding Triple brackets

Where every term inside each bracket is multiplied by every term all other brackets

$$(p+3)(p-1)(p+4)$$

$$= (p^2+3p-p-3)(p+4)$$

 $=(p^2+2p-3)(p+4)$ 

$$= p^3 + 4p^2 + 2p^2 + 8p - 3p - 12$$

$$= p^3 + 6p^2 + 5p - 12$$

## Solve when = 0

-4 + 4 = 0

Multiply to find the

end term 1 &

end term (1 3

(24)

solve 3x + 4 = 00.3x = -4Solve the equation (2x+1)(1-x)=0 $\div 3 \qquad x = \frac{-4}{3} \quad \div 3$ 

$$(2x+1)(1-x)=0$$

Work with 1-x=0both solution x=12x = -1 both solution Therefore, the solutions are

Factorise and solve: Either x-1=0

$$x^{2} + 4x - 5 = 0$$
  $x = (x - 1)(x + 5) = 0$  Or  $x + 5 = 0$ 

Mathematics provides students with powerful ways to describe, analyse, change and improve the world. The mathematics department at Crawshaw Academy aims to spark a passion in mathematics for all students, no matter what their starting point is, through the beauty of discovering patterns, making connections and looking for the 'why' behind mathematical formulae.



We want our students to:

#### **EXCELLENCE:**

- •Strive to improve and progress each lesson, allowing themselves to achieve their personal best in mathematics.
- Develop the skills to understand science, technology and engineering as well as everyday tasks essential for keeping safe and healthy and maintaining their own economic well-being.

#### **PURPOSE:**

- •Tackle rich and diverse problems fluently and make reasoned decisions based on their deep understanding.
- •Share our passion for mathematics and have the belief that by working hard at mathematics they can succeed and that making mistakes is to be seen not as a failure but as a valuable opportunity for new learning.
- Apply reason to all that they do, determined to achieve their goals.

#### **AMBITION:**

- •Strive to develop a curiosity for mathematics through our passion for the subject by having access to mathematics that is both challenging and relevant to everyday life, with an emphasis on problem solving.
- •Become fully participating citizens in an ever-changing society who are able to think mathematically, reason and solve problems, and assess risks in a range of contexts.
- •Access high quality teaching and learning, so they are encouraged to develop into thinking individuals who are mathematically literate and can achieve their potential.
- Have the desire and enthusiasm to aim higher, with motivation to succeed in our plans for the future.

#### Year 9 HALF TERM 5 (summer 1):

G10 - PYTHAGORAS' THEOREM

A12 - NON- LINEAR GRAPHS

PZ - PROBABILITY

## YFAR 9 — SUMMFR

#### G10 - PYTHAGORAS' THEOREM



Solve equations with squares and square roots — U851 Identify the hypotenuse — U283 Determine whether a triangle is right-angled — U385 Puthagoras theorem (find the hypotenuse) — U385

Use Puthagoras theorem on coordinate axes — U828 Proofs of Puthagoras theorem (E) — U385 (conceptual), U828 (application) Puthagoras theorem in 3-D shapes (E) — U541

#### What do I need to be able to do?

Step | Solve equations with squares and square roots

Step 2 Identify the hypotenuse

Step 3 Determine whether a triangle is right-angled

Step 4 Puthagoras theorem (find the hypotenuse)

Step 5 Puthagoras theorem (find any side)

Step 6 Use Puthagoras theorem on coordinate axes'

Step 7 Proofs of Pythagoras theorem (E)

Step 8 Pythagoras theorem in 3-D shapes (E)

## <u>Keywords</u>

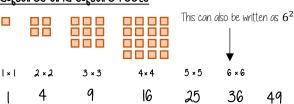
Square number: the output of a number multiplied by itself

Square root: a value that can be multiplied by itself to give a square

Hypotenuse: the largest side on a right angled triangle. Olways opposite the right angle.

Opposite: the side opposite the angle of interest **Odjacent**: the side next to the angle of interest

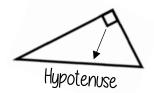
#### Squares and square roots



eg  $\sqrt{64} = 8$ Because 8 × 8 = 64 10 × 10

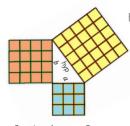
64 81 100

## Identify the hypotenuse



The hypotenuse is always the longest side on a triangle because it is opposite the biggest angle.

### Determine if a triangle is right-angled



If a triangle is right-angled, the sum of the squares of the shorter sides will equal the square of the hypotenuse.

$$a^2 + b^2 = \text{hypotenuse}^2$$

 $eg \ a^2 + b^2 = hypotenuse^2$ 

 $3^2 + 4^2 = 5^2$ 

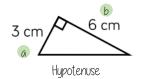
Substituting the numbers into the theorem shows that this is a right-angled triangle



Polygons can still have a hypotenuse if it is split up into I triangles and opposite a right 🛭

 $\Delta \circ \times \Box$ 

### Calculate the hypotenuse



Either of the short sides can be labelled a or b

 $a^2 + b^2 = \text{hypotenuse}^2$ 

I. Substitute in the values for a and b

2. To find the

hupotenuse

square root the

sum of the

squares of the

shorter sides.

 $3^2+6^2$  = hypotenuse<sup>2</sup>

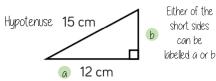
 $9 + 36 = hypotenuse^2$ 

 $45 = hypotenuse^2$ 

 $\sqrt{45}$  = hypotenuse

6.71cm = hypotenuse

#### Calculate missing sides



 $a^2 + b^2 = \text{hypotenuse}^2$ 

$$12^2 + b^2 = 15^2$$

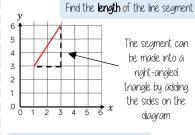
I Substitute in the values you are given

$$144 + b^2 = 225$$
<sub>-144</sub>

Rearrange the equation by subtracting the shorter square from the hypotenuse squared

 $b^2 = 111$ Square root to find the length  $b = \sqrt{111} = 10.54 \ cm$ of the side

### Puthagoras' theorem on a coordinate axis



The line segment is the hypotenuse

 $a^2 + b^2 = \text{hypotenuse}^2$ 

The lengths of a and b are the sides of the triangle.

Be careful to check the scale on the axes

## YEAR 9 - SUMMER

#### A12 - NON- LINEAR GRAPHS



Substitute into quadratic expressions - U585

Draw simple quadratic graphs - U989 Draw more complex quadratic graphs - U989 Interpret quadratic graphs - U667 Interpret reciprocal and exponential graphs - U593, U2291 Draw cubic graphs (E) - U980 Interpret cubic graphs (E) - U980 Interpret roots, intercepts and turning points (E) - U667, U769

#### What do I need to be able to do?

**Step** | Substitute into quadratic expressions

Step 2 Draw simple quadratic graphs

**Step 3** Draw more complex quadratic graphs

Step 4 Interpret quadratic graphs

Step 5 Interpret reciprocal and exponential

Step 6 Draw cubic graphs (E)

Step 7 Interpret cubic graphs (E)

Step 8 Interpret roots, intercepts and turning

points (E)

## <u>Keywords</u>

Quadratic: a curved graph with the highest power being 2. Square power.

**Inequalitu**: makes a non equal comparison between two numbers

**Reciprocal**: a reciprocal is 1 divided bu the number

Cubic: a curved graph with the highest power being 3. Cubic power.

Origin: the coordinate (0, 0)

Parabola: a 'u' shaped curve that has mirror symmetry

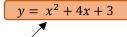
Intersection with

the  $\gamma$  axis

Reciprocal Graphs

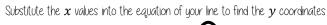
 $y = \frac{1}{x}$ 

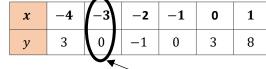
#### Quadratic Graphs



If  $x^2$  is the highest power in your equation then you have a quadratic graph.

It will have a parabola shape



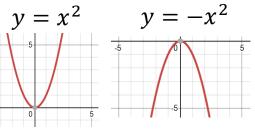


Coordinate pairs for plotting (-3,0)

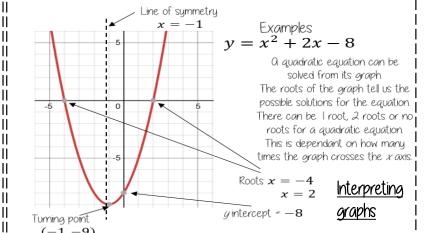
Plot all of the coordinate pairs and join the points with a curve (freehand)

Quadratic graphs are always symmetrical with the turning point in the middle

a quadratic graph will always be in the shape of a parabola



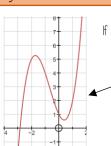
The roots of a quadratic graph are where the graph crosses the xaxis. The roots are the solutions to the equation.



### Interpret other graphs

Cubic Graphs

$$y = x^3 + 2x^2 - 2x + 1$$



If  $x^3$  is the highest power in your equation then you have a cubic graph

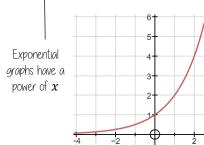
Reciprocal graphs never touch

the  $\nu$  axis. This is because x cannot be 0This is an asymptote

#### Exponential Graphs







## YEAR 9 — SUMMER



P2 - PROBABILITY

Identify and represent sets - U748 Intersection of a set - U748 Union of a set - U748 Complement of a set (E) - U748

Probability of a single event — U5 10

Use diagrams to work out probabilities — U699, U806 Relative frequency — U580 Expected outcomes — U166 Independent events — U558 Probabilities from Venn diagrams — U699

#### What do I need to be able to do?

Step I Identify and represent sets

Step 2 Intersection of a set

Step 3 Union of a set

**Step 4** Complement of a set (E)

Step 5 Probability of a single event

Step 6 Use diagrams to work out probabilities

Step 7 Relative frequency

**Step 8** Expected outcomes

Step 9 Independent events

Step 10 Probabilities from Venn diagrams

### Keywords

Probabilitu: the chance that something will happen

Relative Frequency: how often something happens divided by the outcomes

**Independent**: an event that is not effected by any other events.

Chance: the likelihood of a particular outcome

**Event**: the outcome of a probability — a set of possible outcomes.

Biased: a built in error that makes all values wrong by a certain amount.

#### The probability scale

0 or 0% 1 or 100%  $0.5, \frac{1}{2}$  or 50%

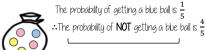
The more likely an event the further up the probability it will be in comparison to another event

(It will have a probability closer to 1) There are 2

pink and 2 There are 5 possible outcomes yellow balls, so So 5 intervals on this scale, each theu have the interval value is  $\frac{1}{2}$ ame probabilitu

#### I Sinale event probabilitu

Probability is always a value between 0 and 1



The table shows the probability of selecting a type of chocolate

The sum of the probabilities is 1

| Dark | Milk | White |
|------|------|-------|
| 0.15 | 0.35 |       |

P(white chocolate) = 1 - 0.15 - 0.35

#### Relative Frequency

#### Frequency of event Total number of outcomes

Remember to calculate or identify the overall number of outcomes!

| Colour | Frequency | Relative<br>Frequency |
|--------|-----------|-----------------------|
| Green  | 6         | 0.3                   |
| Yellow | 12        | 0.6                   |
| Blue   | 2         | 0.1                   |
|        | 20        |                       |

Relative frequency can be used to find expected

e.g. Use the relative probability to find the expected outcome for green if there are 100 selections.

Relative frequency x Number of times  $0.3 \times 100 = 30$ 

#### Expected outcomes

Expected outcomes are estimations. It is a long term average rather than a prediction.

| Dark | Milk | White |  |
|------|------|-------|--|
| 0.15 | 0.35 | 0.5   |  |
|      |      |       |  |

The sum of the probabilities is  $oldsymbol{1}$ 

On experiment is carried out 400

Show that dark chocolate is expected to be selected 60 times

 $0.15 \times 400 = 60$ 

#### Independent events



The rolling of one dice has no impact on the rolling of the other. The individual probabilities should be calculated separately.

#### Probability of event 1 × Probability of event 2



 $P(5) = \frac{1}{6}$   $P(R) = \frac{1}{4}$ 

Find the probability of getting a 5 and

 $P(5 \text{ and } R) = \frac{1}{6} \times \frac{1}{4} = \frac{1}{24}$ 

#### Using diagrams Recap Venn diagrams, Sample space diagrams and Two-way

tables 2 3 10 8

|       | Car | Bus | Walk | Total |
|-------|-----|-----|------|-------|
| Boys  | 15  | 24  | 14   | 53    |
| Girls | 6   | 20  | 21   | 47    |
| Total | 21  | 44  | 35   | 100   |

The possible outcomes from rolling a dice

| Ĕ                                          | · 🛬            |    |   |    |     |     |     |     |     |
|--------------------------------------------|----------------|----|---|----|-----|-----|-----|-----|-----|
| ne possible outcome<br>from tossing a coir |                |    | 1 | 2  | 3   | 4   | 5   | 6   |     |
| ssible                                     | from tossing a |    | Н | ľΗ | 2,H | 3,H | 4,H | 5,H | 6,H |
| og<br>Se                                   | from           |    | T | ļΤ | 2,T | 3,T | 4,T | 5,T | 6,T |
| $\vdash$                                   |                | ٠. |   |    |     |     |     |     |     |

Mathematics provides students with powerful ways to describe, analyse, change and improve the world. The mathematics department at Crawshaw Academy aims to spark a passion in mathematics for all students, no matter what their starting point is, through the beauty of discovering patterns, making connections and looking for the 'why' behind mathematical formulae.



We want our students to:

#### **EXCELLENCE:**

- •Strive to improve and progress each lesson, allowing themselves to achieve their personal best in mathematics.
- Develop the skills to understand science, technology and engineering as well as everyday tasks essential for keeping safe and healthy and maintaining their own economic well-being.

#### **PURPOSE:**

- •Tackle rich and diverse problems fluently and make reasoned decisions based on their deep understanding.
- •Share our passion for mathematics and have the belief that by working hard at mathematics they can succeed and that making mistakes is to be seen not as a failure but as a valuable opportunity for new learning.
- Apply reason to all that they do, determined to achieve their goals.

#### **AMBITION:**

- •Strive to develop a curiosity for mathematics through our passion for the subject by having access to mathematics that is both challenging and relevant to everyday life, with an emphasis on problem solving.
- •Become fully participating citizens in an ever-changing society who are able to think mathematically, reason and solve problems, and assess risks in a range of contexts.
- •Access high quality teaching and learning, so they are encouraged to develop into thinking individuals who are mathematically literate and can achieve their potential.
- Have the desire and enthusiasm to aim higher, with motivation to succeed in our plans for the future.

#### Year 9 HALF TERM 6 (Summer 2):

611 - TRANSFORMATIONS

A13 - SIMULTANEOUS EQUATIONS

612 - TRIGONOMETRY

## YEAR 9 - SUMMER

## 611 — TRANSFORMATIONS

1 OF 2



#### Enlargement (positive scale factor) — U5 19 Enlargement from a point (positive scale 1 factor) - U5 19 Enlargement (fractional scale factor) - U5 19

Enlargement (negative scale factor) (E) - U134 Describe an enlargement - U134 Rotation about a point - U696 Describe a rotation - U696

Translation - U196 Describe a translation - U196 Reflection - U799 Find the result of a series of transformations (E) - U766

#### What do I need to be able to do?

**Step |** Enlargement (positive scale factor)

Step 2 Enlargement from a point (positive scale factor)

**1 Step 3** Enlargement (fractional scale factor)

Step 4 Enlargement (negative scale factor) (E)

Step 5 Describe an enlargement

Step 6 Rotation about a point

Step 7 Describe a rotation

Step 8 Translation

Step 9 Describe a translation

1 Step 10 Reflection

Step 11. Find the result of a series of transformations (E).

Keuwords

Rotate: a rotation is a circular movement. Symmetry: when two or more parts are identical after a transformation.

Regular: a regular shape has anales and sides of equal lengths.

**Invariant**: a point that does not move after a transformation.

Vertex: a point two edges meet.

Horizontal: from side to side

Vertical: from up to down

Enlarge: to make a shape bigger (or smaller) by a given multiplier (scale factor)

Scale Factor: the multiplier of enlargement

#### <u>Rotational Symmetry</u>

Tracing paper helps check | rotational symmetry

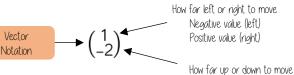
I Trace your shape (mark the centre point)

2. Rotate your tracing paper on top of the original through 360°

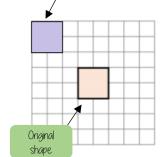
3. Count the times it fits back into itself

O regular pentagon has rotational symmetry of order 5

#### Translation and vector notation



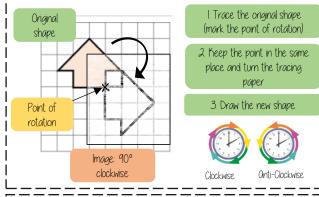




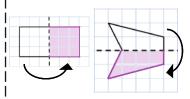
Every vertex has been translated by the same amount

> The image has been moved 3 squares to the left and 3 squares up

## Rotate from a point (in a shape)



#### Compare rotations and reflections

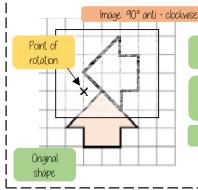


Reflections are a mirror image of the original shape.

Information needed to perform a reflection:

- Line of reflection (Mirror line)

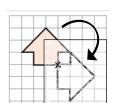
## Rotate from a point (outside a shape)



I Trace the original shape (mark the point of rotation)

2. Keep the point in the same place and turn the tracing

3. Draw the new shape



Rotations are the movement of a shape in a circular motion

#### Information needed to perform a rotation:

- Point of rotation
- Direction of rotation
- Degrees of rotation

## YEAR 9 - SUMMER 611 — TRANSFORMATIONS

Enlargement (positive scale factor) — U5 19 Enlargement from a point (positive scale 1 factor) - U5 19 Enlargement (fractional scale factor) - U5 19

Enlargement (negative scale factor) (E) - U134 Describe an enlargement - U134

Rotation about a point - U696 Describe a rotation - U696

Translation - U196 Describe a translation - U196 \_\_\_\_\_Reflection = U799 Find the result of a series of transformations (E) = U766

1 OF 2 What do I need to be able to do?

**Step |** Enlargement (positive scale factor)

Step 2 Enlargement from a point (positive scale factor)

1 Step 3 Enlargement (fractional scale factor)

Step 4 Enlargement (negative scale factor) (E)

Step 5 Describe an enlargement

Step 6 Rotation about a point Step 7 Describe a rotation

Step 8 Translation

Step 9 Describe a translation

1 Step 10 Reflection

Step 11 Find the result of a series of transformations (E).

## Keywords

Rotate: a rotation is a circular movement.

Symmetry: when two or more parts are identical after a transformation.

Regular: a regular shape has anales and sides of equal lengths. **Invariant**: a point that does not move after a transformation.

Vertex: a point two edges meet.

Horizontal: from side to side

Vertical: from up to down

Enlarge: to make a shape bigger (or smaller) by a given multiplier (scale factor)

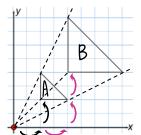
Scale Factor: the multiplier of enlargement

#### Positive scale factors Enlargement from a point

Enlarge shape A by SF 2 from (0,0)

The shape is enlarged by 2

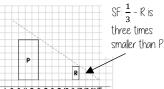
The distance from the point enlarges by 2



#### Fractional scale factors Fractions less than I make a shape SMOLLER

is an enlargement of P by a scale factor

 $\frac{1}{3}$  from centre of enlargement (15,1)



### Negative scale factors

В

Enlarge shape A by SF - I from the point shown to create shape B

A negative enlargement will flip each vertices

#### Enlarge a shape from a point

Scaled distances method

Scale the distance between the point of enlargement and each corresponding vertices

Multiply the distance from the centre of

Raus method

corresponding vertices by the scale factor along the ray

#### Reflect horizontally/ vertically all points need to be the same

distance away from the line of reflection <u>Lines parallel to the x and y</u>

Reflection in the line y axis — this is also a reflection in the line x=0

axis REMEMBER Lines parallel to the x-axis are

Lines parallel to the y-axis are

#### Key Concepts

O reflection creates a mirror image of a shape on a coordinate graph. The mirror line is given by an equation eq. y = 2, x = 2, y = x.

The shape does not change in size.

a rotation turns a shape on a coordinate grid from a given point. The shape does not change size but does change orientation.

On **enlargement** changes the size of an image using a scale factor from a given point.

a positive scale factor will increase the size of an image. a fractional scale factor will reduce the size of an image.

Q **negative scale factor** will place the image on the opposite side of the centre of enlargement, with the image inverted

a translation moves a shape on a coordinate grid. Vectors are used to instruct the movement:



Positive-Right Negative - Left

Positive-Up

Negative - Down

## YFAR 9 — SUMMFR

A13 - SIMULTANEOUS EQUATIONS

Use one value to find another — U753 Introduction to simultaneous equations — U137

Solve simultaneous equations using graphs — U836

Solve simultaneous equations (no adjustments) — U760

ΔΟΧ□

 $\times \Box \Delta O$ 

Two different variables,

Manipulating equations — U325, U870 Solve simultaneous equations (adjust one) — U760Solve simultaneous equations (adjust both) (E) - U760 Solve simultaneous equations by substitution (E) — U757

#### What do I need to be able to do?

**Step I** Use one value to find another

Step 2 Introduction to simultaneous equations

Step 3 Solve simultaneous equations using graphs Step 4 Solve simultaneous equations (no adjustments)

**Step 5** Manipulating equations

**Step 6** Solve simultaneous equations (adjust one)

Step 7 Solve simultaneous equations (adjust both) (E)

Step 8 Solve simultaneous equations by substitution (E)

#### 11 Keuwords

II Solution: a value we can put in place of a variable that makes the equation true

Variable: a sumbol for a number we don't know yet.

**Equation**: an equation says that two things are equal - it will have an equals sign =

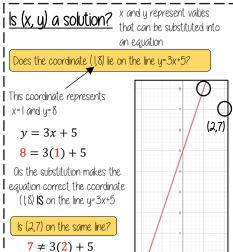
Substitute: replace a variable with a numerical value

II LCM: lowest common multiple (the first time the times table of two or more numbers match) I Eliminate: to remove

!! Expression: a maths sentence with a minimum of two numbers and at least one math operation (no equals sian)

i Coordinate: a set of values that show an exact position.

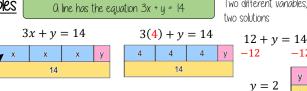
11 Intersection: the point two lines cross or meet.

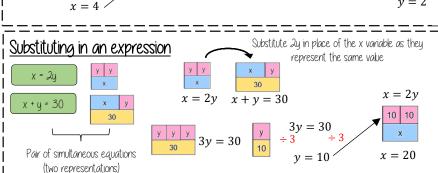


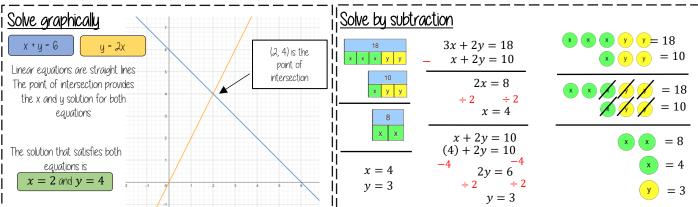
No 7 does NOT equal 6+5

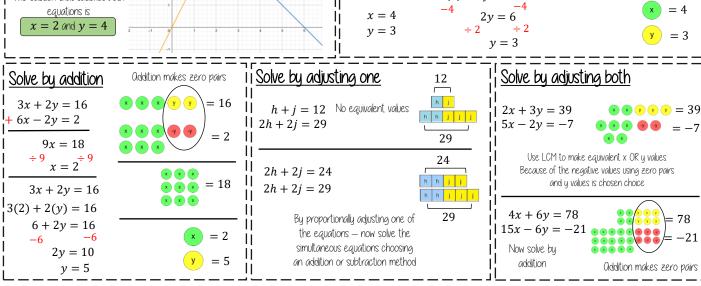


line. Find the value for y









## YEAR 9 - SUMMER

612 - TRIGONOMETRY

Maths

Identify hypotenuse, opposite and adjacent sides — U605

Use the tangent ratio to find unknown side lengths — U283

Use sine and cosine ratios to find unknown side lengths — U283 Use sine, cosine and tangent ratios to find unknown angles — U545

Choose the right method — U605, U283, U545 Key angles in right-angled triangles (E) — U627 Trigonometry in 3-D shapes (E) — U170, U541

#### What do I need to be able to do?

Step I Identify hypotenuse, opposite and adiacent sides

Step 2 Use the tangent ratio to find unknown side lenaths

Step 3 Use sine and cosine ratios to find unknown side lengths

Step 4 Use sine, cosine and tangent ratios to

find unknown angles

Step 5 Choose the right method Step 6 Key angles in right-angled triangles (E)

Step 7 Trigonometry in 3-D shapes (E)

#### Keywords

When the angle is the same

Enlarge: to make a shape bigger (or smaller) by a given multiplier (scale factor)

Scale Factor: the multiplier of enlargement

Constant: a value that remains the same

Cosine ratio: the ratio of the length of the adjacent side to that of the hypotenuse. The sine of the complement.

Sine ratio: the ratio of the length of the opposite side to that of the hypotenuse.

**Tangent ratio**: the ratio of the length of the opposite side to that of the adjacent side. **Inverse:** function that has the opposite effect.

Hupotenuse: longest side of a right-angled triangle. It is the side opposite the right-angle

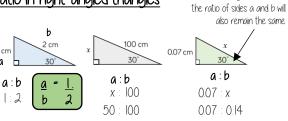
Position depend upon the angle

 $Sin\theta$  = opposite side

hupotenuse side

in use for the question

## Ratio in riaht-analed trianales

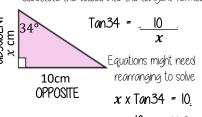


**Hupotenuse, adiacent and opposite** ONLY right-angled triangles are labelled in **ADJACENT** OPPOSITE Next to the angle in question Often labelled last Olways opposite an acute angle Useful to label second

## Tanaent ratio: side lenaths

 $Tan\theta =$ opposite side adjacent side

Substitute the values into the tangent formula

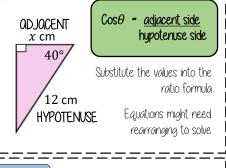


NOTE The Sin(x) ratio is 12 cm HYPOTENUSE the same as the Cos(90-x) ratio Pythagoras theorem 🔞

Sin and Cos ratio: side lengths

OPPOSITE

x cm

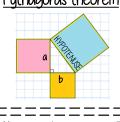


Olways the longest side

Useful to label this first

HYPOTENUSE always opposite the right angle

#### x = .10 . = 14.8cmTan34



Hupotenuse<sup>2</sup> =  $a^2 + b^2$ This is commutative — the

square of the hypotenuse is equal to the sum of the squares of the two shorter

#### Places to look out for Pythagoras Perpendicular heights in isosceles

 $\Box \Delta \circ \times$ 

ΔΟΧ□

ХПДО

- trianales Diagonals on right angled shapes
- Distance between coordinates
- Ony length made from a right angles

Keu anales 0° and 90°

## Sin, Cos, Tan: Ongles

#### Inverse trigonometric functions

**ADJACENT** Label your triangle 3 cm and choose your OPPOSITE trigonometric ratio Substitute values into the ratio formula

 $\theta$  = Tan-1 opposite side adjacent side  $Tan\theta =$ 

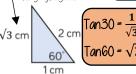
 $\theta$  = Sin<sup>-1</sup> opposite side hypotenuse side  $\theta$  = Tan<sup>-1</sup> 3

adiacent side  $\theta = 36.9^{\circ}$ hypotenuse side

## Keu anales

This side could be calculated using Pythagoras

Because trig ratios remain the same for similar shapes you can generalise from the following statements.



 $\cos 30 = \frac{\sqrt{3}}{3}$  $\frac{1}{\sqrt{3}}$  $\cos 60 = \frac{1}{2}$  $\lceil an60 = \sqrt{3}$ 

Sin30 = Sin60 =  $\frac{\sqrt{3}}{1}$ 

#### Tan0 = 0This value cannot be defined — it is impossible as you cannot have two 90° angles in a triangle

Sin0 = 0

Cos0 = 1 Cos90 = 0

Sin 90 = 1

1 cm

1 cm

Tan45 = 1Sin45 = Cos45 =